enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  3. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    The Natural Area Code, this is the smallest base such that all of ⁠ 1 / 2 ⁠ to ⁠ 1 / 6 ⁠ terminate, a number n is a regular number if and only if ⁠ 1 / n ⁠ terminates in base 30. 32: Duotrigesimal: Found in the Ngiti language. 33: Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong. 34

  4. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:

  5. Unary numeral system - Wikipedia

    en.wikipedia.org/wiki/Unary_numeral_system

    The unary numeral system is the simplest numeral system to represent natural numbers: [1] to represent a number N, a symbol representing 1 is repeated N times. [2]In the unary system, the number 0 (zero) is represented by the empty string, that is, the absence of a symbol.

  6. Ternary numeral system - Wikipedia

    en.wikipedia.org/wiki/Ternary_numeral_system

    As for rational numbers, ternary offers a convenient way to represent ⁠ 1 / 3 ⁠ as same as senary (as opposed to its cumbersome representation as an infinite string of recurring digits in decimal); but a major drawback is that, in turn, ternary does not offer a finite representation for ⁠ 1 / 2 ⁠ (nor for ⁠ 1 / 4 ⁠, ⁠ 1 / 8 ...

  7. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    13 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a positive integer). Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating.

  8. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure. For example, quotient set, quotient group, quotient category, etc. 3. In number theory and field theory, / denotes a field extension, where F is an extension field of the field E. 4.

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...