Search results
Results from the WOW.Com Content Network
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .
In the mathematical field of infinite group theory, the Nottingham group is the group J(F p) or N(F p) consisting of formal power series t + a 2 t 2 +... with coefficients in F p. The group multiplication is given by formal composition also called substitution. That is, if = + =
Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a ...
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
The International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC) is an annual academic conference in the areas of algebraic and enumerative combinatorics and their applications and relations with other areas of mathematics, physics, biology and computer science.
There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere.Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit.