enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  3. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    Kingman's formula gives an approximation for the mean waiting time in a G/G/1 queue. [6] Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution which can be solved using the Wiener–Hopf method .

  4. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]

  5. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).

  6. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.

  7. Rational arrival process - Wikipedia

    en.wikipedia.org/wiki/Rational_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process , allowing for dependent matrix-exponential distributed inter-arrival times.

  8. Lindley equation - Wikipedia

    en.wikipedia.org/wiki/Lindley_equation

    Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.

  9. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    The rate at which jobs receive service changes each time a job arrives at or departs from the system. [ 16 ] For customers who arrive to find the queue as a stationary process, the Laplace transform of the distribution of response times experienced by customers was published in 1970, [ 16 ] for which an integral representation is known. [ 17 ]