Search results
Results from the WOW.Com Content Network
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...
The Unruh temperature has the same form as the Hawking temperature T H = ħg / 2πck B with g denoting the surface gravity of a black hole, which was derived by Stephen Hawking in 1974. [7] In the light of the equivalence principle, it is, therefore, sometimes called the Hawking–Unruh temperature. [8]
A black hole of one solar mass (M ☉ = 2.0 × 10 30 kg) takes more than 10 67 years to evaporate—much longer than the current age of the universe at 1.4 × 10 10 years. [22] But for a black hole of 10 11 kg, the evaporation time is 2.6 × 10 9 years. This is why some astronomers are searching for signs of exploding primordial black holes.
In physics, the Cardy formula gives the entropy of a two-dimensional conformal field theory (CFT). In recent years, this formula has been especially useful in the calculation of the entropy of BTZ black holes and in checking the AdS/CFT correspondence and the holographic principle .
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
For example, in a CFT defined on dimensional Minkowski space the vacuum state corresponds to pure AdS space, whereas the thermal state corresponds to a planar black hole. [8] Important for the present discussion is that the thermal state of a CFT defined on the d {\displaystyle d} dimensional sphere corresponds to the d + 1 {\displaystyle d+1 ...