Search results
Results from the WOW.Com Content Network
n is a free variable and k is a bound variable; consequently the value of this expression depends on the value of n, but there is nothing called k on which it could depend. In the expression ∫ 0 ∞ x y − 1 e − x d x , {\displaystyle \int _{0}^{\infty }x^{y-1}e^{-x}\,dx,}
For a given combination of values for the free variables, an expression may be evaluated, although for some combinations of values of the free variables, the value of the expression may be undefined. Thus an expression represents an operation over constants and free variables and whose output is the resulting value of the expression. [22]
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
ColdFusion: the built-in PrecisionEvaluate() function evaluates one or more string expressions, dynamically, from left to right, using BigDecimal precision arithmetic to calculate the values of arbitrary precision arithmetic expressions. D: standard library module std.bigint; Dart: the built-in int datatype implements arbitrary-precision ...
The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration.
Equation variables, including Y0 - Y9, r1 - r6, and u, v, w. These are essentially strings which store equations. They are evaluated to return a value when used in an expression or program. Specific values, (constant, C) can be plugged in for the independent variable (X) by following the equation name (dependent, Y) by the constant value in ...
When the polynomial is considered as an expression, x is a fixed symbol which does not have any value (its value is "indeterminate"). However, when one considers the function defined by the polynomial, then x represents the argument of the function, and is therefore called a "variable".
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: