Search results
Results from the WOW.Com Content Network
Vladimir Karapetoff (1944) "The special theory of relativity in hyperbolic functions", Reviews of Modern Physics 16:33–52, Abstract & link to pdf; Lanczos, Cornelius (1949), The Variational Principles of Mechanics, University of Toronto Press, pp. 304– 312 Also used biquaternions. French, Anthony (1968). Special Relativity. W. W. Norton ...
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
In this context, is the current 3-form (or even more precise, twisted 3-form), and the star denotes the Hodge star operator. The dependence of Maxwell's equation on the metric of spacetime lies in the Hodge star operator ⋆ {\displaystyle \star } on 2-forms, which is conformally invariant .
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.
In general relativity, the Oppenheimer–Snyder model is a solution to the Einstein field equations based on the Schwarzschild metric describing the collapse of an object of extreme mass into a black hole. [1] It is named after physicists J. Robert Oppenheimer and Hartland Snyder, who published it in 1939. [2]
This was a major source of inspiration for the development of relativity theory. Indeed, even the formulation that treats space and time separately is not a non-relativistic approximation and describes the same physics by simply renaming variables. For this reason the relativistic invariant equations are usually called the Maxwell equations as ...