enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]

  4. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  5. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...

  6. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is zero in the region under consideration, then the field equations are also referred to as the vacuum field equations. By setting T μν = 0 in the trace-reversed field equations , the vacuum field equations, also known as 'Einstein vacuum equations' (EVE), can be written as R μ ν = 0 . {\displaystyle R ...

  8. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.

  9. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    The idea that we can remember the past and not the future is called the "psychological arrow of time" and it has deep connections with Maxwell's demon and the physics of information; memory is linked to the second law of thermodynamics if one views it as correlation between brain cells (or computer bits) and the outer world: Since such ...