Search results
Results from the WOW.Com Content Network
The radius of the outer core is about half of the radius of the Earth. If the field at the core-mantle boundary is fit to spherical harmonics, the dipole part is smaller by a factor of about 8 at the surface, the quadrupole part by a factor of 16, and so on. Thus, only the components with large wavelengths can be noticeable at the surface.
Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon's radius. [32] [33] The inner core was discovered in 1936 by Inge Lehmann and is composed primarily of iron and some nickel. Since ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Magnetic north versus ‘true north’ At the top of the world in the middle of the Arctic Ocean lies the geographic North Pole, the point where all the lines of longitude that curve around Earth ...
The magnetic field—created by the internal motions of the core—produces the magnetosphere which protects Earth's atmosphere from the solar wind. [18] As the Earth is 4.5 billion years old, [19] [20] it would have lost its atmosphere by now if there were no protective magnetosphere.
Scientists have found signs that Earth has another layer — a metal ball inside the inner core. ... Until now, science had only recognized four layers (crust, mantle, outer core and inner core).
Fluid motions occur in the magnetosphere, atmosphere, ocean, mantle and core. Even the mantle, though it has an enormous viscosity , flows like a fluid over long time intervals. This flow is reflected in phenomena such as isostasy , post-glacial rebound and mantle plumes .
In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1,800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was named D″. [4] Later it was found that D" is non-spherical. [5]