Search results
Results from the WOW.Com Content Network
A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...
Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...
Pages in category "Unsolved problems in graph theory" The following 32 pages are in this category, out of 32 total. This list may not reflect recent changes. A.
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...
A few variants of the Chinese Postman Problem have been studied and shown to be NP-complete. [10] The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction.
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Snark (graph theory) Sparse graph. Sparse graph code; Split graph; String graph; Strongly regular graph; Threshold graph; Total graph; Tree (graph theory). Trellis (graph) Turán graph; Ultrahomogeneous graph; Vertex-transitive graph; Visibility graph. Museum guard problem; Wheel graph