enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  3. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.

  4. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation calculator; Pipe pressure drop calculator Archived 2019-07-13 at the Wayback Machine for single phase flows. Pipe pressure drop calculator for two phase flows. Archived 2019-07-13 at the Wayback Machine; Open source pipe pressure drop calculator. Web application with pressure drop calculations for pipes and ducts

  6. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)

  7. Volumetric flux - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flux

    In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...

  8. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross-section.

  9. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    This means the greater the hydraulic radius, the larger volume of water the channel can carry. Based on the 'constant shear stress at the boundary' assumption, [ 6 ] hydraulic radius is defined as the ratio of the channel's cross-sectional area of the flow to its wetted perimeter (the portion of the cross-section's perimeter that is "wet"):