enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear predictive coding - Wikipedia

    en.wikipedia.org/wiki/Linear_predictive_coding

    Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model. [1] [2] LPC is the most widely used method in speech coding and speech synthesis.

  3. Linear encoder - Wikipedia

    en.wikipedia.org/wiki/Linear_encoder

    A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.

  4. Speech coding - Wikipedia

    en.wikipedia.org/wiki/Speech_coding

    In particular, the most common speech coding scheme is the LPC-based code-excited linear prediction (CELP) coding, which is used for example in the GSM standard. In CELP, the modeling is divided in two stages, a linear predictive stage that models the spectral envelope and a code-book-based model of the residual of the linear predictive model.

  5. Code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Code-excited_linear_prediction

    Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).

  6. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    Schematic structure of an autoencoder with 3 fully connected hidden layers. The code (z, or h for reference in the text) is the most internal layer. Autoencoders are often trained with a single-layer encoder and a single-layer decoder, but using many-layered (deep) encoders and decoders offers many advantages. [2]

  7. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, R, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core ...

  8. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    a contention-free quadratic permutation polynomial (QPP). [26] An example of use is in the 3GPP Long Term Evolution mobile telecommunication standard. [27] In multi-carrier communication systems, interleaving across carriers may be employed to provide frequency diversity, e.g., to mitigate frequency-selective fading or narrowband interference. [28]

  9. Golomb coding - Wikipedia

    en.wikipedia.org/wiki/Golomb_coding

    Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, [1] making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values.