enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life.

  4. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    Absorbed amino acids are typically used to create functional proteins, but may also be used to create energy. [3] They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation ...

  5. Pepsin - Wikipedia

    en.wikipedia.org/wiki/Pepsin

    Pepsin is inactive at pH 6.5 and above, however pepsin is not fully denatured or irreversibly inactivated until pH 8.0. [11] [15] Therefore, pepsin in solutions of up to pH 8.0 can be reactivated upon re-acidification. The stability of pepsin at high pH has significant implications on disease attributed to laryngopharyngeal reflux. Pepsin ...

  6. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The enzyme initially has a conformation that attracts its substrate. Enzyme surface is flexible and only the correct catalyst can induce interaction leading to catalysis. Conformational changes may then occur as the substrate is bound. After the reaction products will move away from the enzyme and the active site returns to its initial shape.

  7. Degradative enzyme - Wikipedia

    en.wikipedia.org/wiki/Degradative_enzyme

    A degradative enzyme is an enzyme (in a broader sense a protein) which degrades biological molecules. Some examples of degradative enzymes: Lipase, which digests lipids, [1] Carbohydrases, which digest carbohydrates (e.g., sugars), [2] Proteases, which digest proteins, [3] [4] Nucleases, which digest nucleic acids.

  8. Maltose - Wikipedia

    en.wikipedia.org/wiki/Maltose

    Like glucose, maltose is a reducing sugar, because the ring of one of the two glucose units can open to present a free aldehyde group; the other one cannot because of the nature of the glycosidic bond. Maltose can be broken down to glucose by the maltase enzyme, which catalyses the hydrolysis of the glycosidic bond. [citation needed]

  9. Glucokinase - Wikipedia

    en.wikipedia.org/wiki/Glucokinase

    The S 0.5 and h result in an inflection of the curve enzyme activity as a function of glucose concentration at about 4 mM. [15] In other words, at a glucose concentration of about 72 mg/dL, which is near the low end of the normal range, glucokinase activity is most sensitive to small changes in glucose concentration.