Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Absorbed amino acids are typically used to create functional proteins, but may also be used to create energy. [3] They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation ...
Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into products. [67] The rate data used in kinetic analyses are commonly obtained from enzyme assays . In 1913 Leonor Michaelis and Maud Leonora Menten proposed a quantitative theory of enzyme kinetics, which is referred to as Michaelis–Menten kinetics . [ 68 ]
The glyoxylate shunt comprises two enzymes, malate synthase and isocitrate lyase, and is present in fungi, plants, and bacteria. Despite some reports of glyoxylate shunt enzymatic activities detected in animal tissues, genes encoding both enzymatic functions have only been found in nematodes, in which they exist as a single bi-functional enzyme.
By understanding glycoproteins and their synthesis, they can be made to treat cancer, Crohn's Disease, high cholesterol, and more. [ 3 ] The process of glycosylation (binding a carbohydrate to a protein) is a post-translational modification , meaning it happens after the production of the protein. [ 3 ]
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels. [1]
These enzymes have a variety of uses including degradation of plant materials (e.g., cellulases for degrading cellulose to glucose, which can be used for ethanol production), in the food industry (invertase for manufacture of invert sugar, amylase for production of maltodextrins), and in the paper and pulp industry (xylanases for removing ...
When ample glucose is available, glycogen synthesis proceeds at the periphery of the hepatocytes until the cells are replete with glycogen. Excess glucose is then increasingly converted into triglycerides for export and storage in adipose tissue. Glucokinase activity in the cytoplasm rises and falls with available glucose.