Search results
Results from the WOW.Com Content Network
The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii and , separated by some distance , and for which their surfaces intersect at =. That is, the curvature of the base comes from sphere 2.
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = π / 6 d 3, where d is the diameter of the sphere and also the length of a side of the cube and π / 6 ≈ 0.5236.
a 0-sphere is a pair of points {, +} , and is the boundary of a line segment ( -ball). a 1-sphere is a circle of radius centered at , and is the boundary of a disk ( -ball).
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =.. This may also be written as = (), where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the axis direction to the middle of the cap as seen from the sphere center.
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.