Search results
Results from the WOW.Com Content Network
In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.
In fluid dynamics, Fanno flow (after Italian engineer Gino Girolamo Fanno) is the adiabatic flow through a constant area duct where the effect of friction is considered. [1] Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains ...
So, such a process is a reversible process. According to the second law of thermodynamics, whenever there is a reversible and adiabatic flow, constant value of entropy is maintained. Engineers classify this type of flow as an isentropic flow of fluids. Isentropic is the combination of the Greek word "iso" (which means - same) and entropy.
Isentropic : The process is one of constant entropy (=, =). It is adiabatic (no heat nor mass exchange) and reversible. It is adiabatic (no heat nor mass exchange) and reversible. Isenthalpic : The process that proceeds without any change in enthalpy or specific enthalpy.
An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...
isobaric process – the compressed air then passes through a combustion chamber, where fuel is burned, heating that air—a constant-pressure process, since the chamber is open to flow in and out. isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines).
where is the specific energy, is the specific volume, is the specific entropy, is the molecular mass, here is considered a constant (polytropic process), and can be shown to correspond to the heat capacity ratio. This equation can be shown to be consistent with the usual equations of state employed by thermodynamics.
The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...