enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.

  3. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    In mathematical analysis, the alternating series test proves that an alternating series is convergent when its terms decrease monotonically in absolute value and approach zero in the limit. The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test , Leibniz's rule , or the Leibniz criterion .

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A famous example of an application of this test is the alternating harmonic series = + = + +, which is convergent per the alternating series test (and its sum is equal to ⁡), though the series formed by taking the absolute value of each term is the ordinary harmonic series, which is divergent.

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  7. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    A classic example is the alternating harmonic series given by + + = = +, which converges to ⁡ (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .

  8. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The threefold Cauchy product of 1 − 1 + 1 − 1 + ... is 1 − 3 + 6 − 10 + ..., the alternating series of triangular numbers; its Abel and Euler sum is 1 ⁄ 8. [16] The fourfold Cauchy product of 1 − 1 + 1 − 1 + ... is 1 − 4 + 10 − 20 + ..., the alternating series of tetrahedral numbers , whose Abel sum is 1 ⁄ 16 .

  9. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .