enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0. But the overall rate of reaction is the rate of formation of final product (here CO 2 ), so that r = r 2 ≈ r 1 . That is, the overall rate is determined by the rate of the first step, and (almost) all molecules that react at the first step continue to the fast second step.

  3. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.

  4. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    [1] [2] The amount of product formed is limited by this reagent, since the reaction cannot continue without it. If one or more other reagents are present in excess of the quantities required to react with the limiting reagent, they are described as excess reagents or excess reactants (sometimes abbreviated as "xs"), or to be in abundance .

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.

  7. Market order vs. limit order: How they differ and which type ...

    www.aol.com/finance/market-order-vs-limit-order...

    A limit order will not shift the market the way a market order might. The downsides to limit orders can be relatively modest: You may have to wait and wait for your price.

  8. Diffusion-controlled reaction - Wikipedia

    en.wikipedia.org/wiki/Diffusion-controlled_reaction

    Diffusion-controlled (or diffusion-limited) reactions are reactions in which the reaction rate is equal to the rate of transport of the reactants through the reaction medium (usually a solution). [1] The process of chemical reaction can be considered as involving the diffusion of reactants until they encounter each other in the right ...

  9. Pauling's rules - Wikipedia

    en.wikipedia.org/wiki/Pauling's_rules

    The radius ratio rules are a first approximation which have some success in predicting coordination numbers, but many exceptions do exist. [3] In a set of over 5000 oxides, only 66% of coordination environments agree with Pauling's first rule. Oxides formed with alkali or alkali-earth metal cations that contain multiple cation coordinations are ...