Search results
Results from the WOW.Com Content Network
The poles can be varied at a ratio of 1:2 and thus the speed can be varied at 2:1. [ 7 ] [ 8 ] [ 9 ] Normally, the electrical configuration of windings is varied from a delta connection (Δ) to a double star connection (YY) configuration in order to change the speed of the motor for constant torque applications, such as the hoists in cranes .
A three-phase induction motor has a simple design, inherently high starting torque and high efficiency. Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three ...
The field produced by a single-phase winding can provide energy to a motor already rotating, but without auxiliary mechanisms the motor will not accelerate from a stop. A rotating magnetic field of steady amplitude requires that all three phase currents be equal in magnitude, and accurately displaced one-third of a cycle in phase.
Capasitor-start single-phase motor circuit diagram: Image title: A circuit diagram of a motor with LC circuit with capacitor embedded. Source: Energy-Efficient Electric Motors, Revised and Expanded, Ali Emadi, October 3, 2018, ISBN: 9781351836678: Width: 100%: Height: 100%
As an example, consider the use of a 10 hp, 1760 r/min, 440 V, three-phase induction motor (a.k.a. induction electrical machine in an asynchronous generator regime) as asynchronous generator. The full-load current of the motor is 10 A and the full-load power factor is 0.8. Required capacitance per phase if capacitors are connected in delta:
A motor capacitor [1] [2] is an electrical capacitor that alters the current to one or more windings of a single-phase alternating-current induction motor to create a rotating magnetic field. [ citation needed ] There are two common types of motor capacitors, start capacitor and run capacitor (including a dual run capacitor ).
When an electric motor, AC or DC, is first energized, the rotor is not moving, and a current equivalent to the stalled current will flow, reducing as the motor picks up speed and develops a back EMF to oppose the supply. AC induction motors behave as transformers with a shorted secondary until the rotor begins to move, while brushed motors ...
A three-phase induction motor can be run at two-thirds of its rated horsepower on single-phase power applied to a single winding, once spun up by some means. A three-phase motor running on a single phase cannot start itself because it lacks the other phases to create a rotation on its own, much like a crank that is at dead center.