enow.com Web Search

  1. Ads

    related to: examples of perpendicular angles problems geometry pdf worksheet 5th
  2. education.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Perpendicular - Wikipedia

    en.wikipedia.org/wiki/Perpendicular

    The segment AB is perpendicular to the segment CD because the two angles it creates (indicated in orange and blue) are each 90 degrees. The segment AB can be called the perpendicular from A to the segment CD, using "perpendicular" as a noun. The point B is called the foot of the perpendicular from A to segment CD, or simply, the foot of A on CD ...

  3. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P and Q. The line through P and Q (1) is an angle bisector. Rays have one angle bisector; lines have two, perpendicular to one another.

  4. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Given that Playfair's postulate implies that only the perpendicular to the perpendicular is a parallel, the lines of the Euclid construction will have to cut each other in a point. It is also necessary to prove that they will do it in the side where the angles sum to less than two right angles, but this is more difficult. [17]

  5. Aristotle's axiom - Wikipedia

    en.wikipedia.org/wiki/Aristotle's_axiom

    Aristotle's axiom is an axiom in the foundations of geometry, proposed by Aristotle in On the Heavens that states: If X O Y ^ {\displaystyle {\widehat {\rm {XOY}}}} is an acute angle and AB is any segment, then there exists a point P on the ray O Y → {\displaystyle {\overrightarrow {OY}}} and a point Q on the ray O X → {\displaystyle ...

  6. Carnot's theorem (perpendiculars) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.

  7. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A weak version of the theorem states that

  8. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  9. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    adventitious quadrangles problem. A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one ...

  1. Ads

    related to: examples of perpendicular angles problems geometry pdf worksheet 5th