enow.com Web Search

  1. Ads

    related to: simplifying square roots problems examples 6th degree
  2. generationgenius.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  5. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  6. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  7. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    Since taking the square root is the same as raising to the power ⁠ 1 / 2 ⁠, the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .

  8. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    When ⁠ ⁠ has the opposite sign as either ⁠ + ⁠ or ⁠ ⁠, subtraction can cause catastrophic cancellation, resulting in poor accuracy in numerical calculations; choosing between the version of the quadratic formula with the square root in the numerator or denominator depending on the sign of ⁠ ⁠ can avoid this problem.

  9. Polynomial transformation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_transformation

    Let = + + +be a polynomial, and , …, be its complex roots (not necessarily distinct). For any constant c, the polynomial whose roots are +, …, + is = = + + +.If the coefficients of P are integers and the constant = is a rational number, the coefficients of Q may be not integers, but the polynomial c n Q has integer coefficients and has the same roots as Q.

  1. Ads

    related to: simplifying square roots problems examples 6th degree