Search results
Results from the WOW.Com Content Network
The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [70] and it is also the subject of two upcoming experiments on the International Space Station. [71] [72] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...
Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist by experiment in 1995.
This is the first quantization approach and historically Bose–Einstein and Fermi–Dirac correlations were derived through this wave function formalism. In high-energy physics , however, one is faced with processes where particles are produced and absorbed and this demands a more general field theoretical approach called second quantization .
The thermodynamics of an ideal Bose gas is best calculated using the grand canonical ensemble.The grand potential for a Bose gas is given by: = = (). where each term in the sum corresponds to a particular single-particle energy level ε i; g i is the number of states with energy ε i; z is the absolute activity (or "fugacity"), which may also be expressed in terms of the chemical ...
Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect, Josephson effect and topological order.
The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics.
The BCS theory, however, requires only that the potential be attractive, regardless of its origin. In the BCS framework, superconductivity is a macroscopic effect which results from the condensation of Cooper pairs. These have some bosonic properties, and bosons, at sufficiently low temperature, can form a large Bose–Einstein condensate.
A Bose–Einstein condensate (BEC) is a collection of boson atoms that are all in the same quantum state. [25] In a thermodynamic system, the ground state becomes macroscopically occupied below a critical temperature — roughly when the thermal de Broglie wavelength is longer than the interatomic spacing.