Search results
Results from the WOW.Com Content Network
On Earth, the Rayleigh number for convection within Earth's mantle is estimated to be of order 10 7, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the core). On a global scale, surface expression of this convection is the tectonic ...
The convection of the Earth's mantle is a chaotic process (in the sense of fluid dynamics), which is thought to be an integral part of the motion of plates. Plate motion should not be confused with continental drift which applies purely to the movement of the crustal components of the continents.
Convection within Earth's mantle is the driving force for plate tectonics. Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the upper mantle, and is therefore less dense. This sets up two primary types of instabilities.
Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].
Simulation of thermal convection in the Earth's mantle. Hot areas are shown in red, cold areas are shown in blue. A hot, less-dense material at the bottom moves upwards, and likewise, cold material from the top moves downwards. Convection (or convective heat transfer) is the transfer of heat from
This convective flow of the mantle drives the movement of Earth's lithospheric plates; thus, an additional reservoir of heat in the lower mantle is critical for the operation of plate tectonics and one possible source is an enrichment of radioactive elements in the lower mantle. [14] Earth heat transport occurs by conduction, mantle convection ...
The slab affects the convection and evolution of the Earth's mantle due to the insertion of the hydrous oceanic lithosphere. [3] Dense oceanic lithosphere retreats into the Earth's mantle, while lightweight continental lithospheric material produces active continental margins and volcanic arcs, generating volcanism. [4]
The Earth's mantle is a layer of silicate rock between the crust and the outer core. Its mass of 4.01 × 10 24 kg is 67% the mass of the Earth. [1] It has a thickness of 2,900 kilometres (1,800 mi) [1] making up about 84% of Earth's volume. It is predominantly solid, but in geological time it behaves as a viscous fluid