enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  3. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    [1] The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  4. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.

  5. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient

  6. Combinatorial principles - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_principles

    The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).

  7. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Another way to combine two (disjoint) posets is the ordinal sum [12] (or linear sum), [13] Z = X ⊕ Y, defined on the union of the underlying sets X and Y by the order a ≤ Z b if and only if: a, b ∈ X with a ≤ X b, or; a, b ∈ Y with a ≤ Y b, or; a ∈ X and b ∈ Y. If two posets are well-ordered, then so is their ordinal sum. [14]

  8. Fenwick tree - Wikipedia

    en.wikipedia.org/wiki/Fenwick_tree

    A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.

  9. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The permutations that avoid the generalized patterns 12-3, 32-1, 3-21, 1-32, 3-12, 21-3, and 23-1 are also counted by the Bell numbers. [4] The permutations in which every 321 pattern (without restriction on consecutive values) can be extended to a 3241 pattern are also counted by the Bell numbers. [ 5 ]