Search results
Results from the WOW.Com Content Network
Meta-learning [1] [2] is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing ...
The encryption scheme and the private key creation process are based on Boolean algebra. This technique has the advantage of small time and memory complexities. A disadvantage is the property of backpropagation algorithms: because of huge training sets, the learning phase of a neural network is very long.
Meta-learning is a branch of metacognition concerned with learning about one's own learning and learning processes. The term comes from the meta prefix's modern meaning of an abstract recursion , or "X about X", similar to its use in metaknowledge , metamemory , and meta-emotion .
[1] [2] The algorithm assumes that we have no prior knowledge about the accuracy of the algorithms in the pool, but there are sufficient reasons to believe that one or more will perform well. Assume that the problem is a binary decision problem. To construct the compound algorithm, a positive weight is given to each of the algorithms in the pool.
In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. [1] It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. [2]
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.
The step size is denoted by (sometimes called the learning rate in machine learning) and here ":=" denotes the update of a variable in the algorithm. In many cases, the summand functions have a simple form that enables inexpensive evaluations of the sum-function and the sum gradient.
Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost R package GBM (Generalized Boosted Regression Models) implements extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine.