enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.

  3. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,, , or even over itself.

  5. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.

  6. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)

  7. Axiom of extensionality - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_extensionality

    The axiom of extensionality, [1] [2] also called the axiom of extent, [3] [4] is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. [5] [6] The axiom defines what a set is. [1] Informally, the axiom means that the two sets A and B are equal if and only if A and B have the same members.

  8. Lévy hierarchy - Wikipedia

    en.wikipedia.org/wiki/Lévy_hierarchy

    In the language of set theory, atomic formulas are of the form x = y or x ∈ y, standing for equality and set membership predicates, respectively. The first level of the Lévy hierarchy is defined as containing only formulas with no unbounded quantifiers and is denoted by Δ 0 = Σ 0 = Π 0 {\displaystyle \Delta _{0}=\Sigma _{0}=\Pi _{0}} . [ 1 ]

  9. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    A formula of set theory is stratified if and only if there is a function which sends each variable appearing in (considered as an item of syntax) to a natural number (this works equally well if all integers are used) in such a way that any atomic formula appearing in satisfies () + = and any atomic formula = appearing in satisfies () = ().