Search results
Results from the WOW.Com Content Network
Schematic overview of the classes of stresses in plants Neurohormonal response to stress. Stress, whether physiological, biological or psychological, is an organism's response to a stressor such as an environmental condition. [1] When stressed by stimuli that alter an organism's environment, multiple systems respond across the body. [2]
Being a power law relationship between the crack growth rate during cyclic loading and the range of the stress intensity factor, the Paris–Erdogan equation can be visualized as a straight line on a log-log plot, where the x-axis is denoted by the range of the stress intensity factor and the y-axis is denoted by the crack growth rate.
The relationship between allostasis and allostatic load is the concept of anticipation. Anticipation can drive the output of mediators. Examples of mediators include hormones and cortisol. Excess amounts of such mediators will result in an increase in allostatic load, contributing to anxiety and anticipation. [18]
Tissue stress (tissue adaptive syndrome) is an unspecific adaptive reaction universal for all tissues of adult organism which forms in tissue as a response to various external influences. The latter are tissue cells’ damage, overload of their specialized functions or regulatory influences.
Fatigue in a medical context is used to cover experiences of low energy that are not caused by normal life. [2] [3]A 2021 review proposed a definition for fatigue as a starting point for discussion: "A multi-dimensional phenomenon in which the biophysiological, cognitive, motivational and emotional state of the body is affected resulting in significant impairment of the individual's ability to ...
Prolonged stress can disturb the immune, digestive, cardiovascular, sleep, and reproductive systems. [17] For example, it was found that: Chronic stress reduces resistance of infection and inflammation, and might even cause the immune system to attack itself. [27] Stress responses can cause atrophy of muscles and increases in blood pressure. [28]
The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications. Study in fatigue has been focusing on mainly two fields: size design in aeronautics and energy production using advanced calculation methods.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]