enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. [4] It is written in C++, with a Python interface. [5]

  3. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  4. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [ 2 ]

  5. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN is also used as part of subspace clustering algorithms like PreDeCon and SUBCLU. HDBSCAN* [ 6 ] [ 7 ] is a hierarchical version of DBSCAN which is also faster than OPTICS, from which a flat partition consisting of the most prominent clusters can be extracted from the hierarchy.

  6. CURE algorithm - Wikipedia

    en.wikipedia.org/wiki/CURE_algorithm

    CURE (Clustering Using REpresentatives) is an efficient data clustering algorithm for large databases [citation needed]. Compared with K-means clustering it is more robust to outliers and able to identify clusters having non-spherical shapes and size variances.

  7. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .

  8. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    In contrast to the k-means algorithm, k-medoids chooses actual data points as centers (medoids or exemplars), and thereby allows for greater interpretability of the cluster centers than in k-means, where the center of a cluster is not necessarily one of the input data points (it is the average between the points in the cluster).

  9. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).

  1. Related searches efficient deep embedded subspace clustering software for python pdf download

    subspace clusteringclustering dimensional data