Search results
Results from the WOW.Com Content Network
An axial fan is a type of fan that causes gas to flow through it in an axial direction, parallel to the shaft about which the blades rotate. The flow is axial at entry and exit. The fan is designed to produce a pressure difference, and hence force, to cause a flow through the fan. Factors which determine the performance of the fan include the ...
At least one author takes a different approach in order to avoid a need for the expression freestream static pressure. Gracey has written "The static pressure is the atmospheric pressure at the flight level of the aircraft". [15] [16] Gracey then refers to the air pressure at any point close to the aircraft as the local static pressure.
When a centrifugal fan is specified for a given CFM and static pressure at conditions other than standard, an air density correction factor must be applied to select the proper size fan to meet the new condition. Since 200 °F (93 °C) air weighs only 80% of 70 °F (21 °C) air, the centrifugal fan creates less pressure and requires less power.
The centrifugal fan performance tables provide the fan revolutions per minute (RPM) and brake horsepower requirements for the given CFM and static pressure at standard air density (0.075 pounds per cubic foot). When the centrifugal fan performance is not at standard conditions, the performance must be converted to standard conditions before ...
The fan maintains a constant static pressure in the discharge duct regardless of the position of the VAV box. Therefore, as the box closes, the fan slows down or restricts the amount of air going into the supply duct. As the box opens, the fan speeds up and allows more air flow into the duct, maintaining a constant static pressure. [11]
Vaneaxial fans – These axial flow fans have a higher pressure capability due to the presence of static vanes. Variable pitch axial fans – The blades on these axial fans are manually adjustable to permit the blade angle to be changed. This allows operation over a much wider range of volume/pressure relationships.
Understanding Ceiling Fan Direction “Warm air is lighter than cold air and tends to sit closer to the ceiling, while the lower area of the room stays cool.
The pressure rise results in a stagnation temperature rise. For a given geometry the temperature rise depends on the square of the tangential Mach number of the rotor row. Current turbofan engines have fans that operate at Mach 1.7 or more, and require significant containment and noise suppression structures to reduce blade loss damage and noise.