enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christoph Walther - Wikipedia

    en.wikipedia.org/wiki/Christoph_Walther

    Download as PDF; Printable version; ... Proc. of the 8th European Conf. on Machine Learning (ECML-8). LNAI. ... In Franz Baader; Andrei Voronkov ...

  3. Franz Baader - Wikipedia

    en.wikipedia.org/wiki/Franz_Baader

    Franz Baader (15 June 1959, Spalt) is a German computer scientist at Dresden University of Technology. [ 3 ] [ 4 ] [ 5 ] He received his PhD in Computer Science in 1989 from the University of Erlangen-Nuremberg , Germany , [ 1 ] where he was a teaching and research assistant for 4 years.

  4. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Tsetlin machine - Wikipedia

    en.wikipedia.org/wiki/Tsetlin_machine

    A Tsetlin machine is a form of learning automaton collective for learning patterns using propositional logic. Ole-Christoffer Granmo created [ 1 ] and gave the method its name after Michael Lvovitch Tsetlin , who invented the Tsetlin automaton [ 2 ] and worked on Tsetlin automata collectives and games. [ 3 ]

  7. Inductive bias - Wikipedia

    en.wikipedia.org/wiki/Inductive_bias

    The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered. [1] Inductive bias is anything which makes the algorithm learn one pattern instead of another pattern (e.g., step-functions in decision trees instead of ...

  8. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  9. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...