Search results
Results from the WOW.Com Content Network
Note again that as p + q = 1, the binomial expansion of (p + q) 2 = p 2 + 2pq + q 2 = 1 gives the same relationships. Summing the elements of the Punnett square or the binomial expansion, we obtain the expected genotype proportions among the offspring after a single generation:
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In population genetics, F-statistics (also known as fixation indices) describe the statistically expected level of heterozygosity in a population; more specifically the expected degree of (usually) a reduction in heterozygosity when compared to Hardy–Weinberg expectation.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
If n is the number of involved loci, then the coefficients of the binomial expansion of (a + b) 2n will give the frequency of distribution of all n allele combinations. For sufficiently high values of n, this binomial distribution will begin to resemble a normal distribution. From this viewpoint, a disease state will become apparent at one of ...
Pascal's pyramid is the three-dimensional analog of the two-dimensional Pascal's triangle, which contains the binomial numbers and relates to the binomial expansion and the binomial distribution. The binomial and trinomial numbers, coefficients, expansions, and distributions are subsets of the multinomial constructs with the same names.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.