enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  4. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]

  5. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    For instance it is not true that if two power series = and = have the same radius of convergence, then = (+) also has this radius of convergence: if = and = + (), for instance, then both series have the same radius of convergence of 1, but the series = (+) = = has a radius of convergence of 3.

  7. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  8. Abelian and Tauberian theorems - Wikipedia

    en.wikipedia.org/wiki/Abelian_and_tauberian_theorems

    That theorem has its main interest in the case that the power series has radius of convergence exactly 1: if the radius of convergence is greater than one, the convergence of the power series is uniform for r in [0,1] so that the sum is automatically continuous and it follows directly that the limit as r tends up to 1 is simply the sum of the a n.

  9. Abel's theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_theorem

    The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, ) approaches from below, even in cases where the radius of convergence, , of the power series is equal to and we cannot be sure whether the limit should be finite or not.