Search results
Results from the WOW.Com Content Network
the maximum modulation frequency (or range of modulation frequencies) of an optical modulator; the range of frequencies in which some measurement apparatus (e.g., a power meter) can operate; the data rate (e.g., in Gbit/s) achieved in an optical communication system; see bandwidth (computing).
For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s). w Uses PAM-4 encoding and a 256 bytes FLIT block, of which 14 bytes are FEC and CRC, meaning that 5.47% of total data rate is
The maximum user signaling rate, synonymous to gross bit rate or data signaling rate, is the maximum rate, in bits per second, at which binary information can be transferred in a given direction between users over the communications system facilities dedicated to a particular information transfer transaction, under conditions of continuous transmission and no overhead information.
The difference between baud (or signaling rate) and the data rate (or bit rate) is like a man using a single semaphore flag who can move his arm to a new position once each second, so his signaling rate (baud) is one symbol per second. The flag can be held in one of eight distinct positions: Straight up, 45° left, 90° left, 135° left ...
Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control (the channel ...
When instead, the frequency range is (A, A+B), for some A > B, it is called bandpass, and a common desire (for various reasons) is to convert it to baseband. One way to do that is frequency-mixing the bandpass function down to the frequency range (0, B). One of the possible reasons is to reduce the Nyquist rate for more efficient storage.
In order to calculate the data transmission rate, one must multiply the transfer rate by the information channel width. For example, a data bus eight-bytes wide (64 bits) by definition transfers eight bytes in each transfer operation; at a transfer rate of 1 GT/s, the data rate would be 8 × 10 9 B /s, i.e. 8 GB/s, or approximately 7.45 GiB /s.
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. [1]The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). [2]