Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Tesla coil, 0.76 meters (2 ft 6 in) high, at 200 kV and 270 kV peak [4] 2.1 A High power LED current (peak 2.7 A) [5] 5 A One typical 12 V motor vehicle headlight (typically 60 W) 9 A 230 V AC, toaster, kettle (2 kW) 10 1: 10 or 20 A 230 V AC, Europe common domestic circuit breaker rating 15 or 20 A
The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]
In general, charge Q is determined by steady current I flowing for a time t as Q = I t. Constant, instantaneous and average current are expressed in amperes (as in "the charging current is 1.2 A") and the charge accumulated (or passed through a circuit) over a period of time is expressed in coulombs (as in "the battery charge is 30 000 C ").
Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform.
In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, [3] [4] [5] which is one of Maxwell's equations that form the basis of classical electromagnetism.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.