Search results
Results from the WOW.Com Content Network
A phase margin of 60 degrees is also a magic number because it allows for the fastest settling time when attempting to follow a voltage step input (a Butterworth design). An amplifier with lower phase margin will ring [nb 1] for longer and an amplifier with more phase margin will take a longer time to rise to the voltage step's final level.
Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback factor is chosen smaller than in Figure 6 or 7, moving the condition | β A OL | = 1 to lower frequency. In this example, 1 / β = 77 dB, and at low frequencies A FB ≈ 77 dB as well. Figure 8 shows the gain plot.
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...
In electronics engineering, frequency compensation is a technique used in amplifiers, and especially in amplifiers employing negative feedback.It usually has two primary goals: To avoid the unintentional creation of positive feedback, which will cause the amplifier to oscillate, and to control overshoot and ringing in the amplifier's step response.
You can use a calculator or the simple interest formula for amortizing loans to get the exact difference. For example, a $20,000 loan with a 48-month term at 10 percent APR costs $4,350.
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
If the total network phase angle has a combination of positive and negative phase as a function of frequency then it is a lead-lag network. Depending upon the nominal operation design parameters of a system under an active feedback control, a lag or lead network can cause instability and poor speed and response times.