enow.com Web Search

  1. Ads

    related to: triangle inequality theorem examples problems

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...

  3. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  4. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    Triangle inequality: If a, b, and c are the lengths of the sides of a triangle then the triangle inequality states that +, with equality only in the degenerate case of a triangle with zero area. In Euclidean geometry and some other geometries, the triangle inequality is a theorem about vectors and vector lengths :

  5. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    Fuss' theorem for the relation among the same three variables in bicentric quadrilaterals; Poncelet's closure theorem, showing that there is an infinity of triangles with the same two circles (and therefore the same R, r, and d) Egan conjecture, generalization to higher dimensions; List of triangle inequalities

  6. Barrow's inequality - Wikipedia

    en.wikipedia.org/wiki/Barrow's_inequality

    Barrow's proof of this inequality was published in 1937, as his solution to a problem posed in the American Mathematical Monthly of proving the Erdős–Mordell inequality. [1] This result was named "Barrow's inequality" as early as 1961. [4] A simpler proof was later given by Louis J. Mordell. [5]

  7. Minkowski inequality - Wikipedia

    en.wikipedia.org/wiki/Minkowski_inequality

    The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range. Using the Reverse Minkowski, we may prove that power means with p ≤ 1 , {\textstyle p\leq 1,} such as the harmonic mean and the geometric mean are concave.

  8. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [7] or as a special case of De Gua's theorem (for the particular case of acute triangles), [8] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).

  9. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  1. Ads

    related to: triangle inequality theorem examples problems