Search results
Results from the WOW.Com Content Network
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
where is the slope and is the y-intercept. Because this is a function of only x {\displaystyle x} , it can't represent a vertical line. Therefore, it would be useful to make this equation written as a function of both x {\displaystyle x} and y {\displaystyle y} , to be able to draw lines at any angle.
When the function is of only one variable, it is of the form = +, where a and b are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept. If a > 0 then the gradient is positive and the graph slopes upwards.
Graph = with the -axis as the horizontal axis and the -axis as the vertical axis.The -intercept of () is indicated by the red dot at (=, =).. In analytic geometry, using the common convention that the horizontal axis represents a variable and the vertical axis represents a variable , a -intercept or vertical intercept is a point where the graph of a function or relation intersects the -axis of ...
The graph of this function is a line with slope and y-intercept. The functions whose graph is a line are generally called linear functions in the context of calculus . However, in linear algebra , a linear function is a function that maps a sum to the sum of the images of the summands.
Using this form, vertical lines correspond to equations with b = 0. One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form.