Search results
Results from the WOW.Com Content Network
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
A ribosome is made up of two subunits, a small subunit, and a large subunit. These subunits come together before the translation of mRNA into a protein to provide a location for translation to be carried out and a polypeptide to be produced. [3] The choice of amino acid type to add is determined by a messenger RNA (mRNA) molecule. Each amino ...
Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5] The rate of translation depends on two factors: the rate at which a ribosome is recruited to the RBS
Transfer-messenger RNA (abbreviated tmRNA, also known as 10Sa RNA and by its genetic name SsrA) is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex ( tmRNP ) together with Small Protein B ( SmpB ), Elongation Factor Tu ( EF-Tu ), and ribosomal protein S1.
In bacteria, the initiation of translation occurs when IF-3, along with the 30S ribosomal subunit, bind to the Shine–Dalgarno (SD) sequence of the 5′ UTR. [6] This then recruits many other proteins, such as the 50S ribosomal subunit, which allows for translation to begin. Each of these steps regulates the initiation of translation.
Transduction happens through either the lytic cycle or the lysogenic cycle. When bacteriophages (viruses that infect bacteria) that are lytic infect bacterial cells, they harness the replicational, transcriptional, and translation machinery of the host bacterial cell to make new viral particles ().
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.