enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14] There is only one type of bacterial RNA polymerase whereas eukaryotes have 3 types. [2] Bacteria have a σ-factor that detects and binds to ...

  3. Transcriptional regulation - Wikipedia

    en.wikipedia.org/wiki/Transcriptional_regulation

    Bacteria and eukaryotes have very different strategies of accomplishing control over transcription, but some important features remain conserved between the two. Most importantly is the idea of combinatorial control, which is that any given gene is likely controlled by a specific combination of factors to control transcription.

  4. Eukaryotic transcription - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_transcription

    A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.

  5. Intrinsic termination - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_termination

    With eukaryotes, it shares similarities with its initiation factors that help transcription identify appropriate sequences such as TATA box homologs as well as factors that maintain transcription elongation. However, additional transcription factors similar to those found in bacteria are needed for the whole process to occur.

  6. Transcription (biology) - Wikipedia

    en.wikipedia.org/wiki/Transcription_(biology)

    Transcription termination in eukaryotes is less well understood than in bacteria, but involves cleavage of the new transcript followed by template-independent addition of adenines at its new 3' end, in a process called polyadenylation. [49]

  7. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...

  8. Start codon - Wikipedia

    en.wikipedia.org/wiki/Start_codon

    Alternative start codons are different from the standard AUG codon and are found in both prokaryotes (bacteria and archaea) and eukaryotes. Alternate start codons are still translated as Met when they are at the start of a protein (even if the codon encodes a different amino acid otherwise). This is because a separate tRNA is used for ...

  9. Archaeal transcription - Wikipedia

    en.wikipedia.org/wiki/Archaeal_transcription

    A number of transcription factors govern this process with homologs in both bacteria and eukaryotes, with the core machinery more similar to eukaryotic transcription. [1] [2] Because archaea lack a membrane-enclosed nucleus like bacteria do, transcription and translation can happen at the same time on a newly-generated piece of mRNA.