Search results
Results from the WOW.Com Content Network
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
An example is the koala, because it feeds only on eucalyptus leaves. Primary consumers that feed on many kinds of plants are called generalists. Secondary consumers are small/medium-sized carnivores that prey on herbivorous animals. Omnivores, which feed on both plants and animals, can be considered as being both primary and secondary consumers.
All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion). Then the soluble products of digestion for the organism are being broken down for the release of energy (respiration). All heterotrophs depend on autotrophs for their nutrition. Heterotrophic ...
The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that link an ecosystem into a unified system of exchange.
Detritivores (also known as detrivores, detritophages, detritus feeders or detritus eaters) are heterotrophs that obtain nutrients by consuming detritus (decomposing plant and animal parts as well as feces). [1] There are many kinds of invertebrates, vertebrates, and plants that carry out coprophagy.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Amoeba, Entamoeba histolytica uses holozoic nutrition. Holozoic nutrition (Greek: holo-whole ; zoikos-of animals) is a type of heterotrophic nutrition that is characterized by the internalization and internal processing of liquids or solid food particles. [1]
Holozoa (from Ancient Greek ὅλος (holos) 'whole' and ζῷον (zoion) 'animal') is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms.