Search results
Results from the WOW.Com Content Network
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
In the scientific community, Mr. Hubbell is known for his evaluations, computations and compilations of photon cross sections and attenuation (and energy-absorption) coefficients used in medicine, engineering and other disciplines. He is also known for his computationally tractable solutions of problems associated with the predictions of ...
The attenuation coefficients of common biological materials at a frequency of 1 MHz are listed below: [8] ... Photon Cross Sections Database; NIST's FAST: Attenuation ...
The absorption coefficient of a volume, denoted μ a, and the scattering coefficient of a volume, denoted μ s, are defined the same way as the attenuation coefficient. [ 6 ] The attenuation coefficient of a volume is the sum of absorption coefficient and scattering coefficients: [ 6 ]
The mass attenuation coefficient can be looked up or calculated for any material and energy combination using the National Institute of Standards and Technology (NIST) databases. [ 7 ] [ 8 ] In X-ray radiography the calculation of the mean free path is more complicated, because photons are not mono-energetic, but have some distribution of ...
The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density; The absorption cross section and scattering cross-section, related closely to the absorption and attenuation coefficients, respectively "Extinction" in astronomy, which is equivalent to the attenuation coefficient
In the context of ozone shielding of ultraviolet light, absorption cross section is the ability of a molecule to absorb a photon of a particular wavelength and polarization. Analogously, in the context of nuclear engineering, it refers to the probability of a particle (usually a neutron ) being absorbed by a nucleus.
The absorption coefficient is given by ′ = (), where and are the Einstein coefficients for photon absorption and induced emission respectively. Like the coefficient A 21 {\displaystyle A_{21}} , these are also fixed by the intrinsic properties of the relevant atom for the two relevant energy levels.