Search results
Results from the WOW.Com Content Network
In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter and antimatter (antibaryons) in the observed universe.
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
Another possible explanation of the apparent baryon asymmetry is that matter and antimatter are essentially separated into different, widely distant regions of the universe. The formation of antimatter galaxies was originally thought to explain the baryon asymmetry, as from a distance, antimatter atoms are indistinguishable from matter atoms ...
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
In cosmology, flatness is a property of a space without curvature. Such a space is called a "flat space" or Euclidean space [ citation needed ] . Whether the universe is “flat″ could determine its ultimate fate; whether it will expand forever, or ultimately collapse back into itself.
The visible matter in the Universe, such as stars, adds up to less than 5 percent of the total mass that is known to exist from many other observations. The other 95 percent is dark, either dark matter, which is estimated at 20 percent of the Universe by weight, or dark energy, which makes up the balance. The exact nature of both still is unknown.
Two years of data from NASA's James Webb Space Telescope have now validated the Hubble Space Telescope's earlier finding that the rate of the universe's expansion is faster - by about 8% - than ...
Why does the observable universe have more matter than antimatter? (more unsolved problems in physics) In physical cosmology , leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe , resulting in the present-day dominance of leptons over ...