Search results
Results from the WOW.Com Content Network
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
Sonoco is the world's largest producer of tubes, cores, and fiber concrete columns under the brand name Sonotube concrete forms [5] and a leading manufacturer of blow-molded plastic containers, consumer and industrial thermoformed plastic packaging, engineered molded and extruded plastic products, rigid paperboard containers, and convenience closures.
Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi's but included a shape factor s-q with the depth term Nq. He also included depth factors and inclination factors. [Note: Meyerhof re-evaluated N_q based on a different assumption from Terzaghi and found N_q = ( 1 + sin phi) exp (pi tan phi ) / (1 - sin phi).
Creep and shrinkage of concrete are two physical properties of concrete. The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates), is fundamentally different from the creep of metals and polymers.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases. Abrams’ law is a special case of a general rule formulated ...
The amount of fibers added to a concrete mix is expressed as a percentage of the total volume of the composite (concrete and fibers), termed "volume fraction" (V f). V f typically ranges from 0.1 to 3%. The aspect ratio (l/d) is calculated by dividing fiber length (l) by its diameter (d).
where is the void ratio, is the porosity, V V is the volume of void-space (gases and liquids), V S is the volume of solids, and V T is the total (or bulk) volume. This figure is relevant in composites , in mining (particular with regard to the properties of tailings ), and in soil science .