Search results
Results from the WOW.Com Content Network
Radiation reaching a plant contains entropy as well as energy, and combining those two concepts the exergy can be determined. This sort of analysis is known as exergy analysis or second law analysis, and the exergy represents a measure of the useful work, i.e., the useful part of radiation which can be transformed into other forms of energy.
Photosynthesis refers to the biological process that photosynthetic cells use to synthesize organic compounds from inorganic starting materials using sunlight. [61] What has been primarily implicated as exhibiting non-trivial quantum behaviors is the light reaction stage of photosynthesis.
In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O 2) as a by-product. In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways.
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
Biophysical models are used extensively in the study of electrical conduction in single neurons, as well as neural circuit analysis in both tissue and whole brain. Medical physics , a branch of biophysics, is any application of physics to medicine or healthcare , ranging from radiology to microscopy and nanomedicine .
Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum . Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm.
A germination rate experiment. Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. [1]Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed ...
Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet (wavelength from 100 to 400 nm), visible (400–750 nm), or infrared radiation (750–2500 nm). [1] In nature, photochemistry is of immense importance as it is the basis of photosynthesis, vision, and the formation of vitamin D with sunlight. [2]