Search results
Results from the WOW.Com Content Network
Photosynthesis is the only process that allows the conversion of atmospheric carbon (CO2) to organic (solid) carbon, and this process plays an essential role in climate models. This lead researchers to study the sun-induced chlorophyll fluorescence (i.e., chlorophyll fluorescence that uses the Sun as illumination source; the glow of a plant) as ...
In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O 2) as a by-product. In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways.
Radiation reaching a plant contains entropy as well as energy, and combining those two concepts the exergy can be determined. This sort of analysis is known as exergy analysis or second law analysis, and the exergy represents a measure of the useful work, i.e., the useful part of radiation which can be transformed into other forms of energy.
Photosynthesis refers to the biological process that photosynthetic cells use to synthesize organic compounds from inorganic starting materials using sunlight. [58] What has been primarily implicated as exhibiting non-trivial quantum behaviors is the light reaction stage of photosynthesis.
Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant. Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...
The Emerson effect is the increase in the rate of photosynthesis after chloroplasts are exposed to light of wavelength less than 680 nm (deep red spectrum) and more than 680 nm (far red spectrum). When simultaneously exposed to light of both wavelengths, the rate of photosynthesis is higher than the sum of the red light and far red light ...
In photosynthesis, state transitions are rearrangements of the photosynthetic apparatus which occur on short time-scales (seconds to minutes). The effect is prominent in cyanobacteria, whereby the phycobilisome light-harvesting antenna complexes alter their preference for transfer of excitation energy between the two reaction centers, PS I and PS II. [1]