Search results
Results from the WOW.Com Content Network
The identity is named after Alexandre-Théophile Vandermonde (1772), although it was already known in 1303 by the Chinese mathematician Zhu Shijie. [1] There is a q-analog to this theorem called the q-Vandermonde identity. Vandermonde's identity can be generalized in numerous ways, including to the identity
As with the (non-q) Chu–Vandermonde identity, there are several possible proofs of the q-Vandermonde identity. The following proof uses the q -binomial theorem . One standard proof of the Chu–Vandermonde identity is to expand the product ( 1 + x ) m ( 1 + x ) n {\displaystyle (1+x)^{m}(1+x)^{n}} in two different ways.
The hockey stick identity confirms, for example: for n=6, r=2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then
which follows from Euler's integral formula by putting z = 1. It includes the Vandermonde identity as a special case. For the special case where =, (,;;) = () Dougall's formula generalizes this to the bilateral hypergeometric series at z = 1.
Lagrange's identity; Lagrange's trigonometric identities; List of logarithmic identities; MacWilliams identity; Matrix determinant lemma; Newton's identity; Parseval's identity; Pfister's sixteen-square identity; Sherman–Morrison formula; Sophie Germain identity; Sun's curious identity; Sylvester's determinant identity; Vandermonde's identity ...
Another way to derive the above formula is by taking a limit of the Vandermonde matrix as the 's approach each other. For example, to get the case of x 1 = x 2 {\displaystyle x_{1}=x_{2}} , take subtract the first row from second in the original Vandermonde matrix, and let x 2 → x 1 {\displaystyle x_{2}\to x_{1}} : this yields the ...
The expansion of the Bernoulli polynomials of the second kind into a Newton series reads [1] [2] = + + + … + It can be shown using the second integral representation and Vandermonde's identity. Recurrence formula
The multiplicative formula allows the definition of binomial coefficients to be extended [4] by replacing n by an arbitrary number α (negative, real, complex) or even an element of any commutative ring in which all positive integers are invertible: = _! = () (+) ().