Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (15 psi).
This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [1] as well as in some electrowinning processes. [2] Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently.
Pure water has a charge carrier density similar to semiconductors [12] [page needed] since it has a low autoionization, K w = 1.0×10 −14 at room temperature and thus pure water conducts current poorly, 0.055 μS/cm. [13] Unless a large potential is applied to increase the autoionization of water, electrolysis of pure water proceeds slowly ...
Natural aeration is a type of both sub-surface and surface aeration. It can occur through sub-surface aquatic plants. Through the natural process of photosynthesis, water plants release oxygen into the water providing it with the oxygen necessary for fish to live and aerobic bacteria to break down excess nutrients. [3]
The free oxygen partial pressure in the body of a living vertebrate organism is highest in the respiratory system, and decreases along any arterial system, peripheral tissues, and venous system, respectively. Partial pressure is the pressure that oxygen would have if it alone occupied the volume. [88]
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
Under vacuum, an equilibrium between the content of moisture and air (solved gases) in the liquid and gaseous phase is achieved. The equilibrium depends on the temperature and the residual pressure. The lower that pressure, the faster and more efficiently are water and gas removed.
The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. [2] Oxygen is critical because it allows for respiration of both plant roots and soil organisms. Other natural soil gases include nitric oxide, nitrous oxide, methane, and ammonia. [3]