Search results
Results from the WOW.Com Content Network
Linear motion, also called rectilinear motion, [1] is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non ...
Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve. In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).
To construct a theory of relative motion consistent with the theory of special relativity, we must adopt a different convention. Continuing to work in the (non-relativistic) Newtonian limit we begin with a Galilean transformation in one dimension: [note 2]
Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.
The simplest non-trivial examples are the exponential growth model/decay (one unstable/stable equilibrium) and the logistic growth model (two equilibria, one stable, one unstable). The phase space of a two-dimensional system is called a phase plane , which occurs in classical mechanics for a single particle moving in one dimension, and where ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
László Rédei gives as axioms of motion: [13] Any motion is a one-to-one mapping of space R onto itself such that every three points on a line will be transformed into (three) points on a line. The identical mapping of space R is a motion. The product of two motions is a motion. The inverse mapping of a motion is a motion.
One can also speak of the motion of images, shapes, and boundaries. In general, the term motion signifies a continuous change in the position or configuration of a physical system in space. For example, one can talk about the motion of a wave or the motion of a quantum particle, where the configuration consists of the probabilities of the wave ...