Search results
Results from the WOW.Com Content Network
An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5 / 6 = 1 / 2 + 1 / 3 . As the name indicates, these representations have been used as long ago as ancient Egypt , but the first published systematic method for constructing such expansions was described in ...
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
The Rhind Mathematical Papyrus. An Egyptian fraction is a finite sum of distinct unit fractions, such as + +. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other.
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 . In Unicode, precomposed fraction characters are in the Number Forms block.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n+1 = 1 / a n+1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence { d i } to make each partial denominator a 1:
Chapter 2 (1 CFR 51) concerns the incorporation by reference of outside documents into the Federal Register, thereby making them a part of the Federal Register. Regulations include the circumstances under which the Director of the Federal Register will approve incorporation, how to request approval, which publications are eligible, the proper language for citing incorporated publications, and ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions , as well as some of the more complicated transcendental functions .