Search results
Results from the WOW.Com Content Network
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
HMAC uses two passes of hash computation. Before either pass, the secret key is used to derive two keys – inner and outer. Next, the first pass of the hash algorithm produces an internal hash derived from the message and the inner key. The second pass produces the final HMAC code derived from the inner hash result and the outer key.
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. [1] [2] [3] It was created by Austin Appleby in 2008 [4] and, as of 8 January 2016, [5] is hosted on GitHub along with its test suite named SMHasher.
SHA-1 SHA-2 SHA-3 RIPEMD-160 Tiger Whirlpool BLAKE2 GOST R 34.11-94 [45] (aka GOST 34.311-95) GOST R 34.11-2012 (Stribog) [46] SM3; Botan: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Bouncy Castle: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes BSAFE Crypto-J Yes Yes Yes Yes Yes No No No No No No cryptlib: Yes Yes Yes Yes Yes No Yes No No No No ...
[1] [2] [3] Truncated versions of SHA-2, including SHA-384 and SHA-512/256 are not susceptible, [4] nor is the SHA-3 algorithm. [5] HMAC also uses a different construction and so is not vulnerable to length extension attacks. [6] Lastly, just performing Hash(message ‖ secret) is enough to not be affected. [citation needed]