Search results
Results from the WOW.Com Content Network
The calculation of reinforcement requirements for a one-way slab can be extremely tedious and time-consuming, and one can never be completely certain of the best design. [citation needed] Even minor changes to the project can necessitate recalculation of the reinforcement requirements. There are many factors to consider during the structural ...
The underside of a waffle slab, showing the grid like structure. A waffle slab or two-way joist slab is a concrete slab made of reinforced concrete with concrete ribs running in two directions on its underside. [1] The name waffle comes from the grid pattern created by the reinforcing ribs.
The method adapts the strip method and is based on an elastic analysis of torsionally restrained two-way rectangular slabs with a uniformly distributed load. Marcus introduced a correction factor to the existing Rankine Grashoff theory in order to account for torsional restraints at the corners.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
For example, in designing a staircase, a dead load factor may be 1.2 times the weight of the structure, and a live load factor may be 1.6 times the maximum expected live load. These two "factored loads" are combined (added) to determine the "required strength" of the staircase.
Since the 1950s there have been several attempts to develop theories for arching action in both one and two-way slabs. [5] [6] [7] One of the principal approaches to membrane action was that due to Park [8] which has been used as a basis for many studies into arching action in slabs. Park's approach was based on rigid plastic slab strip theory ...
Compared to one-way hollow-core slabs, biaxial slabs are more resistant to seismic disturbance. One-way decks are supported by a combination of walls and beams, leading to a relatively rigid structure which increases the risk of progressive collapse.
The Filigree Wideslab method is a process for construction of concrete floor decks from two interconnected concrete placements, one precast in a factory, and the other done in the field. The method was developed during the late 1960s by Harry H. Wise as a more efficient and economic construction process than conventional cast-in-place technologies.